Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
J Hazard Mater ; 469: 133881, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38422740

RESUMO

Bromine (Br) is widely distributed through the lithosphere and hydrosphere, and its chemistry in the environment is affected by natural processes and anthropogenic activities. While the chemistry of Br in the atmosphere has been comprehensively explored, there has never been an overview of the chemistry of Br in soil and aquatic systems. This review synthesizes current knowledge on the sources, geochemistry, health and environmental threats, remediation approaches, and regulatory guidelines pertaining to Br pollution in terrestrial and aquatic environments. Volcanic eruptions, geothermal streams, and seawater are the major natural sources of Br. In soils and sediments, Br undergoes natural cycling between organic and inorganic forms, with bromination reactions occurring both abiotically and through microbial activity. For organisms, Br is a non-essential element; it is passively taken up by plant roots in the form of the Br- anion. Elevated Br- levels can limit plant growth on coastal soils of arid and semi-arid environments. Br is used in the chemical industry to manufacture pesticides, flame retardants, pharmaceuticals, and other products. Anthropogenic sources of organobromine contaminants in the environment are primarily wastewater treatment, fumigants, and flame retardants. When aqueous Br- reacts with oxidants in water treatment plants, it can generate brominated disinfection by-products (DBPs), and exposure to DBPs is linked to adverse human health effects including increased cancer risk. Br- can be removed from aquatic systems using adsorbents, and amelioration of soils containing excess Br- can be achieved by leaching, adding various amendments, or phytoremediation. Developing cost-effective methods for Br- removal from wastewater would help address the problem of toxic brominated DBPs. Other anthropogenic organobromines, such as polybrominated diphenyl ether (PBDE) flame retardants, are persistent, toxic, and bioaccumulative, posing a challenge in environmental remediation. Future research directives for managing Br pollution sustainably in various environmental settings are suggested here.


Assuntos
Ecossistema , Retardadores de Chama , Humanos , Bromo , Retardadores de Chama/análise , Gestão de Riscos , Solo/química
2.
Sci Total Environ ; 921: 171106, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387564

RESUMO

Plastic and mixed plastic waste (PW) has received increased worldwide attention owing to its huge rate of production, high persistency in the environment, and unsustainable waste management practices. Therefore, sustainable PW management and upcycling approaches are imperative to achieve the objectives of the United Nations Sustainable Development Goals. Numerous recent studies have shown the application and feasibility of various PW conversion techniques to produce materials with better economic value. Within this framework, the current review provides an in-depth analysis of cutting-edge thermochemical technologies such as pyrolysis, gasification, carbonization, and photocatalysis that can be used to value plastic and mixed PW in order to produce energy and industrial chemicals. Additionally, a thorough examination of the environmental impacts of contemporary PW upcycling techniques and their commercial feasibility through life cycle assessment (LCA) and techno-economical assessment are provided in this review. Finally, this review emphasizes the opportunities and challenges accompanying with existing PW upcycling techniques and deliver recommendations for future research works.

3.
Environ Sci Pollut Res Int ; 31(15): 22802-22813, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38411914

RESUMO

The alginate-biochar formulation for metal removal from aquatic environments has been widely tried but its use for lowering phytoavailability of metals in the soil-crop continuum is limited. Biochar has been increasingly used as a soil amendment due to its potential for soil carbon sequestration and sorption capacity. Handling of powdery biochar as a soil top-dressing material is, however, cumbersome and vulnerable to loss by water and wind. In this experiment, biochar powder, which was pyrolyzed from oak trees, was encapsulated into beads with alginate, which is a naturally occurring polysaccharide found in brown algae. Both batch and pot experiments were conducted to examine the effects of the alginate-encapsulated biochar beads (BB), as compared to its original biochar powdery form (BP), on the Pb adsorption capacity and phytoavailability of soil Pb to lettuce (Lactuca sativa L.). The BB treatment improved reactivity about six times due to a higher surface area (287 m2 g-1) and five times due to a higher cation exchange capacity (50 cmolc kg-1) as compared to the BP treatment. The maximum sorption capacity of Pb was increased to 152 from 81 mg g-1 because of surface chemosorption. Adsorption of Pb onto BB followed multiple first-order kinetics and comprised fast and slow steps. More than 60% of the Pb was adsorbed in the fast step, i.e., within 3 h. Also, the BB treatment, up to the 5% level (w/w), increased soil pH from 5.4 to 6.5 and lowered the phytoavailable fraction of Pb in soil from 5.7 to 0.3 mg kg-1. The Pb concentrations in lettuce cultivated at 5% for the BP and BB treatments were similar but 63 and 66% lower, respectively, than those of the control soil. The results showed that the encapsulation of biochar with alginate enhanced adsorption by the biochar.


Assuntos
Lactuca , Poluentes do Solo , Chumbo , Solo , Alginatos , Poluentes do Solo/análise , Carvão Vegetal
4.
Sci Total Environ ; 916: 170013, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38242452

RESUMO

Nanomaterials in the food industry are used as food additives, and the main function of these food additives is to improve food qualities including texture, flavor, color, consistency, preservation, and nutrient bioavailability. This review aims to provide an overview of the distribution, fate, and environmental and health impacts of food additive nanomaterials in soil and aquatic ecosystems. Some of the major nanomaterials in food additives include titanium dioxide, silver, gold, silicon dioxide, iron oxide, and zinc oxide. Ingestion of food products containing food additive nanomaterials via dietary intake is considered to be one of the major pathways of human exposure to nanomaterials. Food additive nanomaterials reach the terrestrial and aquatic environments directly through the disposal of food wastes in landfills and the application of food waste-derived soil amendments. A significant amount of ingested food additive nanomaterials (> 90 %) is excreted, and these nanomaterials are not efficiently removed in the wastewater system, thereby reaching the environment indirectly through the disposal of recycled water and sewage sludge in agricultural land. Food additive nanomaterials undergo various transformation and reaction processes, such as adsorption, aggregation-sedimentation, desorption, degradation, dissolution, and bio-mediated reactions in the environment. These processes significantly impact the transport and bioavailability of nanomaterials as well as their behaviour and fate in the environment. These nanomaterials are toxic to soil and aquatic organisms, and reach the food chain through plant uptake and animal transfer. The environmental and health risks of food additive nanomaterials can be overcome by eliminating their emission through recycled water and sewage sludge.


Assuntos
Nanoestruturas , Eliminação de Resíduos , Poluentes do Solo , Animais , Humanos , Solo , Esgotos , Ecossistema , Alimentos , Poluentes do Solo/análise , Meio Ambiente , Aditivos Alimentares , Água
5.
Sci Total Environ ; 914: 169585, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38157897

RESUMO

Biochar can be used for multifunctional applications including the improvement of soil health and carbon storage, remediation of contaminated soil and water resources, mitigation of greenhouse gas emissions and odorous compounds, and feed supplementation to improve animal health. A healthy soil preserves microbial biodiversity that is effective in supressing plant pathogens and pests, recycling nutrients for plant growth, promoting positive symbiotic associations with plant roots, improving soil structure to supply water and nutrients, and ultimately enhancing soil productivity and plant growth. As a soil amendment, biochar assures soil biological health through different processes. First, biochar supports habitats for microorganisms due to its porous nature and by promoting the formation of stable soil micro-aggregates. Biochar also serves as a carbon and nutrient source. Biochar alters soil physical and chemical properties, creating optimum soil conditions for microbial diversity. Biochar can also immobilize soil pollutants and reduce their bioavailability that would otherwise inhibit microbial growth. However, depending on the pyrolysis settings and feedstock resources, biochar can be comprised of contaminants including polycyclic aromatic hydrocarbons and potentially toxic elements that can inhibit microbial activity, thereby impacting soil health.


Assuntos
Poluentes do Solo , Solo , Solo/química , Carvão Vegetal/química , Carbono , Poluição Ambiental , Poluentes do Solo/química
6.
Environ Sci Pollut Res Int ; 30(37): 86632-86655, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37438501

RESUMO

The pollution of microplastics (MPs) is a worldwide major concern, as they have become a major part of our food chain. MPs enter our ecosystem via different pathways, including anthropogenic activities and improper disposal of plastics. The aim of this article is to review the current scientific literature related to MPs and how they affect different life forms on earth. Briefly, MPs induced negative effects on humans are primarily linked with the oxidative stress and disruption in immunity. MPs not only affect the soil chemical and physical properties such as reduction in soil health and productivity but also impose harmful effects on soil microorganisms. Moreover, MP-induced plant growth reduction results from three complementary mechanisms: (i) reduction in root and shoot growth, (ii) reduction in photosynthesis accompanied by higher reactive oxygen species (ROS) production, and (iii) reduction in nutrient uptake via altered root growth. Given the negative effects of MPs on different life forms, it is important to remove or remediate them. We have discussed different MP removal methods including coagulation, membrane filtration technology, biochar, and biological degradation of MPs in soil and wastewater effluents. The use of ozone as ultrafiltration technique has also been shown as the most promising technique for MP removal. Finally, some future research recommendations are also put forward at the end to further enhance our understanding of the MPs induced negative effects on different life forms. The flowchart shows the interaction of MPs from water contaminated with MPs with different parts of the ecosystem and final interaction with human health.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Plásticos , Ecossistema , Efeitos Antropogênicos , Transporte Biológico , Solo
7.
Sci Total Environ ; 894: 164744, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37315601

RESUMO

Boron (B) is released to terrestrial and aquatic environments through both natural and anthropogenic sources. This review describes the current knowledge on B contamination in soil and aquatic environments in relation to its geogenic and anthropogenic sources, biogeochemistry, environmental and human health impacts, remediation approaches, and regulatory practices. The common naturally occurring sources of B include borosilicate minerals, volcanic eruptions, geothermal and groundwater streams, and marine water. Boron is extensively used to manufacture fiberglass, thermal-resistant borosilicate glass and porcelain, cleaning detergents, vitreous enamels, weedicides, fertilizers, and B-based steel for nuclear shields. Anthropogenic sources of B released into the environment include wastewater for irrigation, B fertilizer application, and waste from mining and processing industries. Boron is an essential element for plant nutrition and is taken up mainly as boric acid molecules. Although B deficiency in agricultural soils has been observed, B toxicity can inhibit plant growth in soils under arid and semiarid regions. High B intake by humans can be detrimental to the stomach, liver, kidneys and brain, and eventually results in death. Amelioration of soils and water sources enriched with B can be achieved by immobilization, leaching, adsorption, phytoremediation, reverse osmosis, and nanofiltration. The development of cost-effective technologies for B removal from B-rich irrigation water including electrodialysis and electrocoagulation techniques is likely to help control the predominant anthropogenic input of B to the soil. Future research initiatives for the sustainable remediation of B contamination using advanced technologies in soil and water environments are also recommended.


Assuntos
Boro , Minerais , Humanos , Boro/toxicidade , Gestão de Riscos , Solo , Água
8.
Sci Total Environ ; 886: 163968, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37164068

RESUMO

Biochar can be an effective carrier for microbial inoculants because of its favourable properties promoting microbial life. In this review, we assess the effectiveness of biochar as a microbial carrier for agricultural and environmental applications. Biochar is enriched with organic carbon, contains nitrogen, phosphorus, and potassium as nutrients, and has a high porosity and moisture-holding capacity. The large number of active hydroxyl, carboxyl, sulfonic acid group, amino, imino, and acylamino hydroxyl and carboxyl functional groups are effective for microbial cell adhesion and proliferation. The use of biochar as a carrier of microbial inoculum has been shown to enhance the persistence, survival and colonization of inoculated microbes in soil and plant roots, which play a crucial role in soil biochemical processes, nutrient and carbon cycling, and soil contamination remediation. Moreover, biochar-based microbial inoculants including probiotics effectively promote plant growth and remediate soil contaminated with organic pollutants. These findings suggest that biochar can serve as a promising substitute for non-renewable substrates, such as peat, to formulate and deliver microbial inoculants. The future research directions in relation to improving the carrier material performance and expanding the potential applications of this emerging biochar-based microbial immobilization technology have been proposed.


Assuntos
Inoculantes Agrícolas , Poluentes do Solo , Agricultura , Carbono , Carvão Vegetal , Solo/química , Poluentes do Solo/análise
9.
Sci Total Environ ; 881: 163456, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37062308

RESUMO

Asbestos is a group of six major silicate minerals that belong to the serpentine and amphibole families, and include chrysotile, amosite, crocidolite, anthophyllite, tremolite and actinolite. Weathering and human disturbance of asbestos-containing materials (ACMs) can lead to the emission of asbestos dust, and the inhalation of respirable asbestos fibrous dust can lead to 'mesothelioma' cancer and other diseases, including the progressive lung disease called 'asbestosis'. There is a considerable legacy of in-situ ACMs in the built environment, and it is not practically or economically possible to safely remove ACMs from the built environment. The aim of the review is to examine the three approaches used for the sustainable management of hazardous ACMs in the built environment: containment, stabilization, and inertization or destruction. Most of the asbestos remaining in the built environment can be contained in a physically secured form so that it does not present a significant health risk of emitting toxic airborne fibres. In settings where safe removal is not practically feasible, stabilization and encapsulation can provide a promising solution, especially in areas where ACMs are exposed to weathering or disturbance. Complete destruction and inertization of asbestos can be achieved by thermal decomposition using plasma and microwave radiation. Bioremediation and chemical treatment (e.g., ultrasound with oxalic acid) have been found to be effective in the inertization of ACMs. Technologies that achieve complete destruction of ACMs are found to be attractive because the treated products can be recycled or safely disposed of in landfills.

10.
Environ Pollut ; 320: 121077, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36646409

RESUMO

Beryllium (Be) is a relatively rare element and occurs naturally in the Earth's crust, in coal, and in various minerals. Beryllium is used as an alloy with other metals in aerospace, electronics and mechanical industries. The major emission sources to the atmosphere are the combustion of coal and fossil fuels and the incineration of municipal solid waste. In soils and natural waters, the majority of Be is sorbed to soil particles and sediments. The majority of contamination occurs through atmospheric deposition of Be on aboveground plant parts. Beryllium and its compounds are toxic to humans and are grouped as carcinogens. The general public is exposed to Be through inhalation of air and the consumption of Be-contaminated food and drinking water. Immobilization of Be in soil and groundwater using organic and inorganic amendments reduces the bioavailability and mobility of Be, thereby limiting the transfer into the food chain. Mobilization of Be in soil using chelating agents facilitates their removal through soil washing and plant uptake. This review provides an overview of the current understanding of the sources, geochemistry, health hazards, remediation practices, and current regulatory mandates of Be contamination in complex environmental settings, including soil and aquatic ecosystems.


Assuntos
Berílio , Poluentes do Solo , Humanos , Ecossistema , Solo , Poluentes do Solo/análise , Gestão de Riscos , Carvão Mineral
11.
Environ Pollut ; 321: 121080, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36702428

RESUMO

Medical wastes include all solid and liquid wastes that are produced during the treatment, diagnosis, and immunisation of animals and humans. A significant proportion of medical waste is infectious, hazardous, radioactive, and contains potentially toxic elements (PTEs) (i.e., heavy metal (loids)). PTEs, including arsenic (As), cadmium (Cd), lead (Pb) and mercury (Hg), are mostly present in plastic, syringes, rubber, adhesive plaster, battery wastes of medical facilities in elemental form, as well as oxides, chlorides, and sulfates. Incineration and sterilisation are the most common technologies adopted for the safe management and disposal of medical wastes, which are primarily aimed at eliminating deadly pathogens. The ash materials derived from the incineration of hazardous medical wastes are generally disposed of in landfills after the solidification/stabilisation (S/S) process. In contrast, the ash materials derived from nonhazardous wastes are applied to the soil as a source of nutrients and soil amendment. The release of PTEs from medical waste ash material from landfill sites and soil application can result in ecotoxicity. The present study is a review paper that aims to critically review the dynamisms of PTEs in various environmental media after medical waste disposal, the environmental and health implications of their poor management, and the common misconceptions regarding medical waste.


Assuntos
Eliminação de Resíduos de Serviços de Saúde , Resíduos de Serviços de Saúde , Mercúrio , Metais Pesados , Eliminação de Resíduos , Animais , Humanos , Incineração , Metais Pesados/análise , Resíduos Perigosos/análise , Resíduos Sólidos/análise
12.
J Hazard Mater ; 443(Pt A): 130189, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36265382

RESUMO

This review aims to provide an overview of the sources and reactions of persistent organic pollutants (POPs) and surfactants in soil and sediments, the surfactant-enhanced solubilisation of POPs, and the unintended consequences of surfactant-induced remediation of soil and sediments contaminated with POPs. POPs include chemical compounds that are recalcitrant to natural degradation through photolytic, chemical, and biological processes in the environment. POPs are potentially toxic compounds mainly used in pesticides, solvents, pharmaceuticals, or industrial applications and pose a significant and persistent risk to the ecosystem and human health. Surfactants can serve as detergents, wetting and foaming compounds, emulsifiers, or dispersants, and have been used extensively to promote the solubilization of POPs and their subsequent removal from environmental matrices, including solid wastes, soil, and sediments. However, improper use of surfactants for remediation of POPs may lead to unintended consequences that include toxicity of surfactants to soil microorganisms and plants, and leaching of POPs, thereby resulting in groundwater contamination.


Assuntos
Poluentes Ambientais , Poluentes do Solo , Humanos , Solo/química , Tensoativos/química , Poluentes Orgânicos Persistentes , Poluentes do Solo/metabolismo , Ecossistema
13.
Nat Commun ; 13(1): 7233, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36433980

RESUMO

Climate extremes cause significant winter wheat yield loss and can cause much greater impacts than single extremes in isolation when multiple extremes occur simultaneously. Here we show that compound hot-dry-windy events (HDW) significantly increased in the U.S. Great Plains from 1982 to 2020. These HDW events were the most impactful drivers for wheat yield loss, accounting for a 4% yield reduction per 10 h of HDW during heading to maturity. Current HDW trends are associated with yield reduction rates of up to 0.09 t ha-1 per decade and HDW variations are atmospheric-bridged with the Pacific Decadal Oscillation. We quantify the "yield shock", which is spatially distributed, with the losses in severely HDW-affected areas, presumably the same areas affected by the Dust Bowl of the 1930s. Our findings indicate that compound HDW, which traditional risk assessments overlooked, have significant implications for the U.S. winter wheat production and beyond.


Assuntos
Triticum , Vento , Estações do Ano , Clima , Mudança Climática
14.
J Hazard Mater ; 436: 129304, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35739801

RESUMO

The wide use of hazardous formaldehyde (CH2O) in disinfections, adhesives and wood-based furniture leads to undesirable emissions to indoor environments. This is highly problematic as formaldehyde is a highly hazardous and toxic compound present in both liquid and gaseous form. The majority of gaseous and atmospheric formaldehyde derive from microbial and plant decomposition. However, plants also reversibly absorb formaldehyde released from for example indoor structural materials in such as furniture, thus offering beneficial phytoremediation properties. Here we provide the first comprehensive review of plant formaldehyde metabolism, physiology and remediation focusing on release and absorption including species-specific differences for maintaining indoor environmental air quality standards. Phytoremediation depends on rhizosphere, temperature, humidity and season and future indoor formaldehyde remediation therefore need to take these biological factors into account including the balance between emission and phytoremediation. This would pave the road for remediation of formaldehyde air pollution and improve planetary health through several of the UN Sustainable Development Goals.


Assuntos
Poluição do Ar em Ambientes Fechados , Poluição do Ar em Ambientes Fechados/análise , Biodegradação Ambiental , Formaldeído/análise , Umidade , Plantas , Madeira/química
15.
J Environ Manage ; 318: 115519, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35716555

RESUMO

Globally, the valorisation of food waste into digestate through the process of anaerobic digestion is becoming increasingly popular. As a result, a large amount of food-waste digestate will need to be properly utilised. The utilisation of anaerobic digestion for fertiliser and alternative uses is essential to obtain a circular bioeconomy. The review aims to examine the environmental management of food-waste digestate, the value of digestate as a fertiliser and soil conditioner, and the emerging uses and improvements for post-anaerobic digestion reuse of digestate. Odour emissions, contaminants in food waste, emission and leaching of nutrients into the environment, and the regulations, policies, and voluntary initiatives of anaerobic digestion are evaluated in the review. Food-waste digestate can provide essential nutrients, carbon, and bio-stimulants to soils and increase yield. Recently, promising research has shown that digestates can be used in hydroponic systems and potentially replace the use of synthetic fertilisers. The integration of anaerobic digestion with emerging uses, such as extraction of value-added products, algae cultivation, biochar and hydrochar production, can further reduce inhibitory sources of digestate and provide additional economic opportunities for businesses. Moreover, the end-product digestate from these technologies can also be more suitable for use in soil application and hydroponic use.


Assuntos
Fertilizantes , Eliminação de Resíduos , Anaerobiose , Alimentos , Solo
16.
Sci Total Environ ; 839: 156373, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35649457

RESUMO

Land treatment has become an essential waste management practice. Therefore, soil becomes a major source of contaminants including organic chemicals and potentially toxic elements (PTEs) which enter the food chain, primarily through leaching to potable water sources, plant uptake, and animal transfer. A range of soil amendments are used to manage the mobility of contaminants and subsequently their bioavailability. Various soil amendments, like desorbing agents, surfactants, and chelating agents, have been applied to increase contaminant mobility and bioavailability. These mobilizing agents are applied to increase the contaminant removal though phytoremediation, bioremediation, and soil washing. However, possible leaching of the mobilized pollutants during soil washing is a major limitation, particularly when there is no active plant uptake. This leads to groundwater contamination and toxicity to plants and soil biota. In this context, the present review provides an overview on various soil amendments used to enhance the bioavailability and mobility of organic and inorganic contaminants, thereby facilitating increased risk when soil is remediated in polluted areas. The unintended consequences of the mobilization methods, when used to remediate polluted sites, are discussed in relation to the leaching of mobilized contaminants when active plant growth is absent. The toxicity of targeted and non-targeted contaminants to microbial communities and higher plants is also discussed. Finally, this review work summarizes the existing research gaps in various contaminant mobilization approaches, and prospects for future research.


Assuntos
Poluentes do Solo , Solo , Animais , Biodegradação Ambiental , Compostos Orgânicos/metabolismo , Plantas/metabolismo , Poluentes do Solo/análise
17.
Front Plant Sci ; 13: 845443, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35295626

RESUMO

Sorghum is an important crop, which is widely used as food, forage, fodder and biofuel. Despite its natural adaption to resource-poor and stressful environments, increasing yield potential of sorghum under more favorable conditions holds promise. Nitrogen is the most important nutrient for crops, having a dynamic impact on all growth, yield, and grain-quality-determining processes. Thus, increasing nitrogen use efficiency (NUE) in sorghum would provide opportunities to achieve higher yield and better-quality grain. NUE is a complex trait, which is regulated by several genes. Hence, exploring genetic diversity for NUE can help to develop molecular markers associated with NUE, which can be utilized to develop high NUE sorghum genotypes with greater yield potential. Research on improving NUE in sorghum suggests that, under water-deficit conditions, traits such as stay-green and altered canopy architecture, and under favorable conditions, traits such as an optimized stay-green and senescence ratio and efficient N translocation to grain, are potential breeding targets to develop high NUE sorghum genotypes. Hence, under a wide range of environments, sorghum breeding programs will need to reconsider strategies and develop breeding programs based on environment-specific trait(s) for better adaptation and improvement in productivity and grain quality. Unprecedented progress in sensor-based technology and artificial intelligence in high-throughput phenotyping has provided new horizons to explore complex traits in situ, such as NUE. A better understanding of the genetics and molecular pathways involving NUE, accompanied by targeted high-throughput sensor-based indices, is critical for identifying lines or developing management practices to enhance NUE in sorghum.

18.
Sci Total Environ ; 824: 153828, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35157873

RESUMO

Due to the increasing concerns on global ecosystems and human health, the environmental risks posed by microplastics (MPs) and nanoplastics (NPs) have become an important topic of research. Their ecological impacts on various faunal species have been extensively researched and reviewed. However, the majority of those studies perceive these micro(nano)-plastics (MNPs) as a single entity rather than a collective term for a group of chemically distinct polymeric particulates. Each of the plastic polymers can possess unique physical and chemical behavior, which, in turn, can determine the possible environmental impacts. Furthermore, many studies explore the adsorption, absorption, and release of other environmental pollutants by MNPs. But only a handful of them explore the leaching of additives possessed by these polymers. Data on the environmental behavior and toxicity of individual additives associated with different polymer particulates are scarce. Knowledge about the leachability and ecotoxicity of the additives associated with environmental MNPs (unlike large plastic particles) remains limited. The ecological impacts of different MNPs together with their additives and the basis of their toxicity have not been explored yet. The present review systematically explores the potential implications of environmentally predominant polymers and their associated additives and discusses their physicochemical characteristics. The review ultimately aims to provide novel insights on what components precisely make MNPs hazardous to the fauna. The paper also discusses the major challenges proposed in the available literature along with recommendations for future research to throw light on possible solutions to overcome the hazards of MNPs.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Poeira , Ecossistema , Poluentes Ambientais/toxicidade , Humanos , Microplásticos/toxicidade , Plásticos/toxicidade , Polímeros , Poluentes Químicos da Água/análise
19.
Sci Total Environ ; 822: 153555, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35104528

RESUMO

Adsorption is the most widely adopted, effective, and reliable treatment process for the removal of inorganic and organic contaminants from wastewater. One of the major issues with the adsorption-treatment process for the removal of contaminants from wastewater streams is the recovery and sustainable management of spent adsorbents. This review focuses on the effectiveness of emerging adsorbents and how the spent adsorbents could be recovered, regenerated, and further managed through reuse or safe disposal. The critical analysis of both conventional and emerging adsorbents on organic and inorganic contaminants in wastewater systems are evaluated. The various recovery and regeneration techniques of spent adsorbents including magnetic separation, filtration, thermal desorption and decomposition, chemical desorption, supercritical fluid desorption, advanced oxidation process and microbial assisted adsorbent regeneration are discussed in detail. The current challenges for the recovery and regeneration of adsorbents and the methodologies used for solving those problems are covered. The spent adsorbents are managed through regeneration for reuse (such as soil amendment, capacitor, catalyst/catalyst support) or safe disposal involving incineration and landfilling. Sustainable management of spent adsorbents, including processes involved in the recovery and regeneration of adsorbents for reuse, is examined in the context of resource recovery and circular economy. Finally, the review ends with the current drawbacks in the recovery and management of the spent adsorbents and the future directions for the economic and environmental feasibility of the system for industrial-scale application.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Incineração , Águas Residuárias/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos
20.
Environ Pollut ; 300: 118860, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35114306

RESUMO

Currently, 1.3 billion tonnes of food are thrown away each year, most of which are incinerated or landfilled causing large environmental, social, and economic issues. Therefore, the utilisation of food waste as biofertilisers, such as composts and digestates, is a solution to reduce the problems created by incineration and landfilling whilst simultaneously amending soils. The improper disposal of food wastes and bulking materials can contribute to high levels of contaminants within the end-product. Moreover, the food waste and bulking materials, themselves, may contain trace amounts of contaminants. These contaminants tend to have long half-lives, are easily mobile within soil and plants, can accumulate within the food supply chain, and have moderate to high levels of toxicity. This review aims to examine the current and emerging contaminants of high concern that impact the quality of food-waste fertilisers. The paper presents the volume of current and emerging contaminants of plastics, other physical (particulate) contaminants, heavy metals, pesticides, polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), per- and polyfluoroalkyl substances (PFAS), and pathogens within food-waste composts and digestates. Due to the large extent of organic chemical contaminants and the unknown level of toxicity and persistence, the risk assessment of organic chemical contaminants in the food-supply chain remains largely unknown. This study has presented available data from literature of various contaminants found in food waste, and composts and digestates derived from food waste, and evaluated the data with current regulations globally. Overall, to reduce contaminants in composts and digestates, more studies are required on the implementation of proper disposal separation, effective composting and digestion practices, increased screening of physical contaminants, development of compostable plastics, and increased regulatory policies on emerging, problematic contaminants. Moreover, examination of emerging contaminants in food-waste composts and digestates is needed to ensure food security and reduce future human-health risks.


Assuntos
Compostagem , Eliminação de Resíduos , Gerenciamento de Resíduos , Alimentos , Humanos , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA